
Towards Generating the Rationale for Code Changes
Francesco Casillo∗, Antonio Mastropaolo†, Gabriele Bavota‡, Vincenzo Deufemia∗ and Carmine Gravino∗

∗Department of Computer Science
University of Salerno

Emails: fcasillo@unisa.it, deufemia@unisa.it, gravino@unisa.it
†Computer Science
William & Mary

Email: amastropaolo@wm.edu
‡Software Institute

Università della Svizzera Italiana
Email: gabriele.bavota@usi.ch

Abstract—Commit messages are essential to under-
stand changes in software projects, providing a way
for developers to communicate code evolution. Gen-
erating effective commit messages that explain the
rationale behind changes is a challenging and time-
consuming task. While previous research has shown
success in automating straightforward commit messages
(e.g., “add README”), our study explores a more
complex task: generating rationale explanations for code
changes. We developed a method to identify rationale
sentences in commit messages and compiled a dataset
of 45,945 commits with their corresponding rationales.
A pre-trained model was trained on this dataset to
generate rationale explanations. While the approach we
engineered for the extraction of rationale from commit
messages exhibited a 75% precision, the model trained
to generate the rationale only worked in a minority of
cases. Our findings highlight the difficulty of the tackled
task and the need for additional research in the area. We
release our dataset and code to foster the investigation
of this problem.

Index Terms—Rationale of Code Changes, Deep
Learning, Natural Language Processing.

I. Introduction

The usage of proper development infrastructures and
appropriate means of communication is crucial in both
industrial and open-source projects [1]. Communication
among developers does not only come through explicit
channels (e.g., issue tracker, instant messaging) but also
via implicit information left during development activities,
such as commit messages. The latter serves as a form of
documentation aimed at explaining what was changed in a
given commit (e.g., “updated README file . . . ”) and/or
why a specific change occurred (e.g., “. . . to specify the
new terms of service”) [2].

Despite their importance, developers do not always
have the time to craft commit messages [2]. To support
them in this task, researchers proposed techniques for
the generation of commit messages [3]–[6]. While these
techniques are promising, they are mostly successful in
documenting what changed, rather than why a change has
been performed.

For example, Liu et al. [7] showed that one of the state-
of-the-art techniques was mostly successful in generating
“trivial messages”, namely those containing redundant
information which can be easily inferred by looking at
the list of impacted files (e.g., “update changelog”).

The focus on generating what changed rather than
documenting why the change was performed is the result
of design choices made when creating the dataset, and in
particular the target message Cm. The latter usually is the
first sentence in the commit message [4], [8], [9], which is
extracted from what is known as “commit subject”, namely
a short text summarizing changes made in the commit.
Indeed, as shown by Jiang et al. [10], more than 80% of
commit subjects consist of just one sentence. However,
commit messages include a “commit body”, providing a
longer explanation for the implemented changes (possibly
including the why). We refer to the “why” as the rationale
for code changes.

While the what can be inferred by looking at the commit
diff, the why is more difficult to infer for a human and,
as such, its automatic generation may help in better
understanding the evolution of the code base: suggesting
the reasons behind code changes is a critical need in
software development [11], and previous studies reported
the rationale behind code changes to be the most common
[12] and crucial [13] piece of information developers look
for in the code change history.

The availability of a tool that can automatically generate
the rationale for code changes can promote a deeper
understanding of code evolution. This is the problem we
tackle by training a generative Deep Learning (DL) model
on a dataset composed by pairs ⟨Cdiff , {Cr}⟩, where {Cr}
represents sentences expressing the rationale for Cdiff .

Fig. 1 overviews all the steps we take in this paper
towards the goal of automatically generating the rationale
for a code commit. There are two main steps. First, we
engineered a procedure to automatically mine commits
with their rationale to build the dataset of ⟨Cdiff , {Cr}⟩
pairs. Then, we used such dataset to instruct a LLM to
automatically generate a possible rationale for a code diff.

Generating the Rationale for Commits - Section 52

Training

Cdiff

{ Cr }

Commits
documenting rationale

Mining Commits with their Rationale - Sections 3 & 41

< Cdiff , Cm >

Rationale filtering pipeline (Section 3)
Identifies commit messages featuring an explicit rationale

Rationale Finder
BERT-based
BiLSTM
Tian et al. [29]

Discarded commits
(not documenting rationale)

No explicit
rationale

< Cdiff , Cm >

Rationale extraction (Section 4)
Takes as input commits documenting the rationale and
extracts from their message the sentences documenting it

No rationale
extracted/found

< Cdiff , { Cr } >

Explicit Rationale
Filter
FastText-based
Random Forest

Rationale Extractor

LLaMA [38]

Trained Rationale
Generator
CodeT5+ [44]

No
rationale

Cdiff = changed code lines in a commit
Cm = commit message
{ Cr } = sentences expressing the rationale for Cdiff

Fig. 1. Overview of the process we adopt towards generating the rationale for code changes

We defined a pipeline taking as input a commit message1

and classifying it as containing or not a description of
the rationale for the implemented change (Section III).
While there is a technique in the literature to classify
commit messages as containing or not the rationale for
the change [2], this approach considers as a valid rationale
what the authors define implicit rationale (i.e., a rationale
which is not explicitly stated but can be inferred from the
message), which is inappropriate for our goal. Still, we use
this approach proposed by Tian et al. [2] as the first step
of our pipeline (Rationale Finder in Fig. 1) to perform a
preliminary filtering discarding commits not featuring a
rationale (either explicit or implicit). The commits classified
by the Rationale Finder as featuring a rationale, are then
provided as input to the Explicit Rationale Filter, being a
classifier we trained to keep the commit messages featuring
an explicit rationale and to discard the implicit ones.

We run the pipeline on ∼5.9k GitHub Java-based
repositories, identifying commits documenting a rationale
in their message. From those, we manually labeled a
statistically significant sample of 665 commit messages, to
(i) check whether they contained an explicit rationale and,
in case of affirmative answer, (ii) extract the sentence(s)
documenting the rationale. Concerning (i), we found out
that the defined pipeline (i.e., Rationale Finder followed
by Explicit Rationale Filter) can identify commit messages
featuring an explicit rationale with a precision of 81%.
The step (ii), instead, resulted in a dataset of 540 pairs
⟨Cm, {Cr}⟩, with Cm being the full commit message, and
{Cr} being the set of sentences from Cm documenting
the rationale. This small dataset is not suitable to train
a generative model for the automatic rationale generation
task, but we used it to define data-driven solutions for the
task of rationale extraction from a commit message (i.e.,
input to the technique is Cm, expected output is {Cr}).

We used the extracted pairs to train and test a DL-based
solution for the automated extraction of rationale from
commit messages (Rationale Extractor in Fig. 1), to build
the large-scale dataset needed for the generative model
(Section IV). Among the experimented solutions, few-shot
learning specializing a pre-trained large language model
(i.e., LLaMA [14]) for the task of interest worked the best.

1From now on we indicate with “commit message” the concatena-
tion of the commit subject followed by the commit body.

Using just 15 examples (i.e., pairs ⟨Cm, {Cr}⟩), LLaMA
learned how to extract a meaningful rationale from the
input commit message with a ∼75% precision. LLaMA
finalizes the definition of our procedure to mine commits
with their rationale (see Fig. 1): this procedure starts with
commits mined from software repositories and ends with a
subset of those commits paired with the rationale extracted
from their commit message (i.e., the ⟨Cdiff , {Cr}⟩ pairs).

As result, we built a dataset of 45,945 commits (diffs)
associated with their rationale. These commits have been
used to fine-tune CodeT5+ [15], a LLM pre-trained on code
and natural language, for the commit rationale generation
task (input to the technique is Cdiff , expected output
{Cr}) — see Section V. Once trained, the model can
be used to generate the rationale for a code diff (see
dashed lines in Fig. 1). Our empirical assessment shows
that CodeT5+ can synthesize a meaningful rationale for a
commit message in a minority of cases from our test set.
The level of performance is definitively not sufficient to
make our approach a solution for developers. However, we
still feel the presented empirical investigation as a valuable
step in addressing the tackled problem, considering the (at
least partial) positive results achieved in the automated
mining of rationale from commits and our documented
experience in fine-tuning CodeT5+ for such a task. We
hope that the released datasets and code [16] can be used
to foster research in this area.

To sum up, the contributions of our work are:
1) Introduced a pipeline combining a Rationale Finder

and an Explicit Rationale Filter to identify commits
with explicit rationale from GitHub repositories.

2) Exploited few-shot learning to deal with the task of
rationale extraction, implementing a LLaMA-based
Rationale Extractor.

3) Conducted an empirical evaluation of the CodeT5+
model’s ability to generate rationale, laying ground-
work for future research into Rationale Generator.

4) Released datasets, code, and the pipeline to the
public, supporting further research and development
in automated rationale documentation [16].

Section II reviews related works in the field. Section III
details the process of mining commits documenting the
rationale. The methodology for extracting the rationale is
outlined in Section IV.

The approach to generating rationale for commit differ-
ences is elaborated in Section V. Section VI addresses the
threats to the validity of our work. Finally, Section VII
concludes the paper offering an overview of the findings
and our future research directions.

II. Related work
Our work relates to studies on rationale information

in software artifacts. Al Safwan et al. [11] interviewed
developers, finding that >80% highlight the importance of
knowing the rationale behind code commits, while >30%
face difficulties in locating this information. Some proposals
[17], [18] aim to support developers by making decision
rationales explicit or by creating automated rationale
extraction systems, inspiring our research.

Other solutions focus on extracting rationales from
specific artifacts [19], [20], but these rely on hand-crafted
heuristics tailored to specific artifact types, such as Python
Enhancement Proposals, and cannot be generalized to
commit messages.

The most relevant work is by Tian et al. [2], who analyzed
∼1.6k commit messages, finding that only 44% documented
both what changed and why. They developed a Bi-LSTM
model identifying rationale with 84% accuracy. This serves
as the basis for our Rationale Finder pipeline (Fig. 1), as
we explain in Section III.

Our work also builds on automatic commit message
generation techniques, which can be classified as rule-based
[21]–[24], retrieval-based [7], [25], and learning-based [5],
[6], [9], [26]–[33], with the latter being most related to
our approach. While these techniques generate commit
messages based on code diffs (Cdiff), they primarily
document what changed, rather than the rationale behind
the changes, which is the focus of our work.

III. Mining Commits Documenting the Rationale
for Code Changes

We present the process to identify commit messages
containing an explicit rationale in Section III-A and the
empirical study for accuracy assessment in Section III-B.

A. Approach Description
To avoid reinventing the wheel, we looked for works

in the literature proposing solutions for the automated
identification of the rationale in commit messages. The
closest work we found is the one by Tian et al. [2] (see Sec-
tion II), presenting a technique to classify commit messages
as containing or not the what (what changed in the commit)
and why (what we call “rationale”) information. Their
approach can identify commits containing why information
with an accuracy of 84%. This result has been achieved on
a dataset of 1,649 commit messages manually annotated by
the authors as containing or not the what/why information.
While such an approach represents a good starting point
for our research, it has a limitation: it identifies as commit
messages containing the why also those featuring what the
authors define an implicit rationale.

For example, the commit “add docs about null responses”
does not have an explicit rationale, but its main purpose to
increase code readability can be inferred, so the approach
classifies it as containing the why. However, these commit
messages are unsuitable for our final goal (i.e., training a
model to generate the rationale for code changes). For this
reason, we decided to build on top of the approach by Tian
et al. to create a classifier specifically designed to identify
commit messages containing an explicit rationale. To this
aim, the first author manually inspected the 1,157 commit
messages manually labeled by Tian et al. as featuring a
rationale (which could be implicit or explicit), with the goal
of marking those containing an explicit rationale. These
commit messages are a subset of the overall 1,649 used for
training and testing the approach by Tian et al.. Out of the
1,157 inspected commit messages, 351 were identified as
reporting an explicit rationale (e.g., “Close response body
to avoid connection leak”).

We used the dataset of 1,157 commit messages labeled as
containing an explicit (351) or an implicit (806) rationale to
train and test a Random Forest classifier. The idea is that
such a classifier can receive as input the commit messages
classified by the approach by Tian et al. as containing a
rationale (explicit or implicit), and discriminate which of
those actually feature an explicit rationale.

Since the input of the Random Forest is a text (i.e., the
commit message), we experimented with three different
word embedding techniques to represent the input: Term
Frequency–Inverse Document Frequency (TF-IDF) [34],
fastText [35], and Bidirectional Encoder Representations
from Transformers (BERT) [36]. TF-IDF is a popular text
representation technique that measures the importance
of a term in a document corpus by computing a weight
based on its frequency in a document and its rarity across
the entire corpus. FastText is a lightweight open-source
library developed by Facebook AI Research for learning
text representations and implementing text classification
models. It utilizes n-gram features and employs techniques
like subword embeddings to handle out-of-vocabulary words
effectively. BERT is a pre-trained Deep Learning model
introduced by Devlin et al. (2018). It utilizes a Transformer
architecture [37] to learn contextualized word embeddings
when trained on large textual corpora, and has achieved
state-of-the-art performance in various NLP tasks.

We used the default settings of the Random Forest,
being: 100 estimators, None as max depth of the trees,
2 min samples split, and 1 min samples leaf. While we
experimented with a random grid search to optimize these
parameters, we did not observe any major difference in
performance, thus keeping the original settings.

B. Empirical Evaluation
We present the design of the empirical study aimed at

evaluating the process used to identify commit messages
likely to feature an explicit rationale (Section III-B1) and
discuss the achieved results (Section III-B2).

1) Study Design: The formulated research question is:

RQ1: To what extent is our Random Forest
classifier able to discriminate commit messages
containing an explicit vs an implicit rationale?

To answer RQ1, we perform a 10-fold cross validation
on the dataset of 1,157 commit messages labeled by the
first author as containing (351) or not (806) an explicit
rationale. Remember that these are commit messages
manually labeled by Tian et al. as containing a rationale
(implicit or explicit) which have been further specialized
in our work. We experiment with the three variants of
the Random Forest using different embeddings (i.e., TF-
IDF, FastText, and BERT). Since our goal is to use the
Random Forest as a filter for the approach by Tian et al.
(i.e., excluding commits reporting an implicit rationale) to
build a large-scale dataset featuring commits with their
explicit rationale, it becomes fundamental the precision
of both these techniques when they report a commit as
including a rationale (Tian et al.) and as including an
explicit rationale (Random Forest). In other words, we may
accept false negatives (i.e., commits actually containing an
explicit rationale are not identified by the combination of
the two techniques), but we want to minimize false positives
(i.e., commits wrongly retrieved as containing an explicit
rationale). For this reason, we perform an analysis aimed
at maximizing the precision of our pipeline.

Both classifiers provide as output a probability assigning
each instance (commit message) to each of the output
classes (e.g., for the Random Forest, the two classes are
implicit/explicit rationale). The higher the probability
assigned to a class, the higher the confidence that the
model has in the classification.

We study the impact of the classification confidence level
on the recall and precision (i) of the approach by Tian
et al. when classifying the commit message as containing
a rationale and (ii) of our Random Forest when reporting
an instance as containing an explicit rationale.

This analysis can help in identifying a confidence thresh-
old under which the classifiers should not be trusted. For
example, if we find that commit messages classified by the
Random Forest as containing an explicit rationale with a
probability lower than 60% result in a precision of 20%
and a recall of 90%, while moving to a probability of 80%
pushes the precision to 70% paying a reasonable cost in
recall, we may consider sacrificing a few instances when
mining data in the name of increasing the dataset quality.

Once identified the most suitable configuration (i.e.,
minimum confidence level to trust the classification) to use
for both the Tian et al. model and our Random Forest, we
run the defined pipeline in the wild. Remember that at this
point the pipeline works as follows: a commit message is
given in input to the Tian et al. approach; if it is classified as
not containing the why, the message is discarded, otherwise
it is provided as input to the Random Forest which classifies
it as containing or not an explicit rationale.

In case of negative answer, the commit message is
discarded, otherwise, it is kept for further future processing
in the next steps of our approach. Running this pipeline
in the wild has two objectives: (i) it provides us with a
population of commits likely to contain an explicit rationale
from which we extract a statistically significant sample to
manually inspect, thus assessing the capabilities of the
pipeline to identify commits relevant for our research; (ii)
using the collected commits in the subsequent steps of our
approach to train a model for the automatic generation of
the rationale behind code commits.

We run our “Rationale filtering pipeline” (see Fig. 1) on
all commits featured in Java projects hosted on GitHub and
having at least 500 commits, 10 contributors, and 10 stars.
These filters aim to reduce the chances of considering toy
projects in our study (as observed in a previous work [38]).
The focus on Java aims instead at following the choice made
by most of the works addressing the automated generation
of commit messages [39]. We use the tool by Dabic̀ et al.
[40] to retrieve the list of 5,970 projects matching our
selection criteria, while pydriller [41] is used to extract the
commits performed in each subject repository, excluding
commits that (i) had a message not written in English
and (ii) were likely performed by bots. To identify commit
messages not written in English we exploit a combination of
three libraries/models. The first is the FastText model for
language identification that has been trained on data from
Wikipedia, Tatoeba, and SETimes [35], [42] to classify
the text written in 176 different languages. The other
two are the spaCy [43] and the langdetect [44] libraries,
which include language detection capabilities. We exclude a
commit message if it results to be classified as not written
in English by at least one of the three techniques, thus
being conservative in mining the commits to be used in our
study. Concerning the exclusion of commits contributed by
bots, we apply simple heuristics acting on the contributor’s
name and on the commit message as done in previous
work [45]–[48]. For example, commits containing “bot”
in the name of the contributor are excluded. The script
implementing all filtering rules for bot-related commits is
available in our replication package [16]. Commits classified
by our pipeline as relevant for our work (i.e., the approach
by Tian et al. reports the commit as featuring the why,
and our Random Forest indicates the presence of an
explicit rationale) have been saved for later usage with
their related information. The application of the proposed
process provides a collection of 3,550,080 commits likely to
contain an explicit rationale, which becomes 1,565,739 once
we remove duplicates. We consider as duplicates commits
sharing the same hash (likely due to forked projects) or the
same commit message. The exclusion of commits having the
same commit message already at this step avoids any sort
of data leakage between training and test sets in the later
steps of our approach, in which we use these commits as a
starting point to create the pairs ⟨Cdiff , {Cr}⟩ featuring
code changes (Cdiff) and their rationale ({Cr}).

TABLE I
RQ1: Results of the 10-fold cross validation

Embedding Accuracy “Explicit” Class
Precision Recall

TF-IDF 0.85 0.83 0.65
FastText 0.84 0.87 0.56
BERT 0.81 0.72 0.61

Thus, we exclude all commits which change more than a
single diff hunk (with a hunk being a contiguous set of lines
impacted by the change) and/or more than 10 code lines.
This increases our confidence about the rationale described
in the commit message to refer to the diff hunk. In a commit
modifying several files, the documented rationale may refer
only to a specific part of the diff, introducing noise in the
training data. We acknowledge that this choice simplifies
the tackled problem because we are focusing on “simple”
commits. However, being our work the first attempt to
automatically generate the rationale for code changes, we
consider this as a safe choice to avoid negative results due
to the low quality of the training data (i.e., rationales
not clearly linked to code changes). Out of the ∼1.5M
commits previously collected, 567,534 impact a single file
and 127,699 a single diff hunk. Among those, 96,034 (75%)
feature changes impacting at most 10 lines of code.

From this set, a statistically significant sample (99%
confidence ±5%) of 665 commits has been randomly
extracted and manually inspected to verify whether they
actually feature an explicit rationale. Each commit has
been independently inspected by the first and the second
authors of the paper. Conflicts, which arose in 188 commits
(28%), have been solved by the other three authors (∼60
each). We discuss the results of the manual analysis as a
validation of our pipeline.

2) Results Discussion: Table I reports the performance
of the Random Forest when using different embeddings. We
report (i) the accuracy (i.e., the percentage of 1,157 commit
messages correctly classified as reporting an implicit or an
explicit rationale), and (ii) the recall and precision for
the commit messages belonging to the “explicit” class.
The recall indicates the percentage of commit messages
featuring an explicit rationale that the model was able to
identify (351 of those commits are present in our dataset).
The precision indicates the percentage of commit messages
classified by the Random Forest as reporting an explicit
rationale that are actually correct.

Since our interest is in building a dataset of commit
messages with an explicit rationale, the focus of our analysis
is on the method that presents the best precision. From this
perspective BERT is the least performing representation
with a precision of 72%. The best in case is FastText (87%)
with TF-IDF also producing solid recommendations (83%
of precision). As expected FastText pays with a lower recall
which, as explained, is not central in our work since we can
run our pipeline on thousands of repositories, so building a
large-enough dataset even in the presence of false negatives;
FastText is the word embedding we adopt.

TABLE II
RQ1: Precision and recall of the approach by Tian et al. and

of the random forest at different confidence levels

Model Metrics Min Confidence level
0.5 0.6 0.7 0.8 0.9

BERT-based
BiLSTM

Precision 0.86 0.88 0.88 0.89 0.90
Recall 0.91 0.88 0.87 0.86 0.85

FastText-based
Random Forest

Precision 0.87 0.91 0.94 0.96 0.96
Recall 0.56 0.49 0.37 0.23 0.11

Concerning the confidence impact of both models on
their classification accuracy, Table II reports the achieved
results. For what concerns the model by Tian et al. (BERT-
based BiLSTM in Table II), using the default settings
(i.e., 0.5 threshold) we observe a precision of 85% and a
recall of 91% in identifying commit messages featuring
a rationale (explicit or implicit). When considering as
commits featuring a rationale those classified as such
with higher confidence, the precision of the classification
increases by paying a price in terms of recall. In particular,
we have considered thresholds of 0.6, 0.7, 0.8, and 0.9
(e.g., in the latter case, a commit is classified as featuring
a rationale only if the confidence of the model is higher
than 0.9). While the results are available in our replication
package [16], we can highlight that using 0.9 as a confidence
threshold results in a precision of 90% while still keeping
rather high values of recall (85%). This is the configuration
we have employed in our study to select the commits to
provide as input to the random forest.

Concerning the confidence on the classification provided
by the Random Forest, as it can be seen in Table II, the
slight gain in precision when increasing the confidence
threshold has an excessive cost in terms of recall, thus
suggesting the usage of the default 0.5 confidence threshold.

Out of the 665 commits identified as featuring an explicit
rationale, we classified 540 of them (81%) as correct, e.g.,
“remove unneeded check for final methods, in most cases
the modifier needs to be removed anyway to implement it”
(all data publicly available in [16]). This result is inline
with what expected considering the previously reported
evaluations of the two components in isolation.

Indeed, by multiplying the errors, we expected a precision
around 78% (i.e., 90%×87%). The achieved results support
the usage of the two techniques as the first step for the
building of a large scale dataset featuring ⟨Cdiff , {Cr}⟩
pairs. We discuss in the next section how, starting from the
identified commits, we extract from the commit messages
only the sentences documenting the rationale (i.e., {Cr}).

Answer to RQ1: Our Random Forest classifier can
discriminate commit messages featuring an explicit
rationale with a precision of 87% and a recall of
56%. When queued to the approach by Tian et al.,
the whole pipeline can mine commits featuring an
explicit rationale with a precision of 81%.

IV. Extracting Sentences Featuring the
Rationale

We detail the “Rationale Extractor” (see Fig. 1) we use
to convert the 96,034 ⟨Cdiff , Cm⟩ pairs into ⟨Cdiff , {Cr}⟩
pairs, with {Cr} being the rationale in Cm. The approach
is described in Section IV-A, while its empirical evaluation
is presented in Section IV-B.

A. Approach Description
We started collecting data useful for approaching this

task during the previously described manual inspection
of 665 commits likely to feature an explicit rationale. In
particular, besides classifying them as featuring or not an
explicit rationale, we also extracted from the true positives
(i.e., those actually featuring an explicit rationale) the set
{Cr} of sentences documenting the rationale. We followed
the exact same procedure previously described: the first
two authors independently performed this task on all 665
commits. In this case, there was agreement on just 9% of
the instances (60). Such a low agreement is explained by the
nature of the performed task. Indeed, when extracting the
sentences documenting the rationale in the commit message,
we considered even minor differences in the extracted
sentences as a conflict. For example, two sentences being
identical but for a period terminating only one of the two
were considered as a conflict. What we observed is that, in
most cases, the rationale extracted from one author was
a subset of the rationale extracted from the other author.
Conflicting cases have been distributed among the three
other authors to solve them. In the end, out of the 665
inspected commits: 125, as explained in Section III-B2,
do not contain an explicit rationale, 450 feature a single
sentence documenting the rationale, and 90 feature two or
three sentences documenting the rationale.

To the set of 665 commits, we added 271 commits for
which Tian et al. manually identified the sentences featuring
the explicit rationale in the associated commit message [2]
(similarly to what we did). Out of the overall 936 instances,
137 did not contain an explicit rationale (125 from our
dataset plus 12 from the dataset by Tian et al.), while 799
feature at least one sentence explaining the rationale. We
set apart 187 instances (20% of the total) as test set, leaving
the remaining 749 to be used as the training dataset.

The built dataset has been used to train and experiment
with the Meta AI’s LLaMA [14], a set of foundational
language models with parameter sizes ranging from 7B
to 65B. These models have been pre-trained on trillions
of textual tokens, achieving state-of-the-art performance
in several NLP tasks. For example, LLaMA-13B (i.e.,
13 Billions of trainable parameters) exhibits superior
performance compared to GPT-3 (175B) across various
benchmarks [14]. We leverage LLaMA-7B due to the limited
availability of hardware resources.

We specialize LLaMA for the task of interest using two
different approaches designed to work with few training
instances (given the 749 training instances at our disposal).

The first approach is what is called efficient fine-tuning
[49], in which most of the model’s parameters are frozen,
and just a minority of them are fine-tuned to specialize
the model for the task of interest. In our case, we used the
LLaMA-Adapter [50], which only re-trains 1.2M parameters
(out of the 7B) during fine-tuning. Each training instance
is represented by a pair ⟨Input, ExpectedOutput⟩:
Input: “[ASV-1778] Using a null parent to avoid having
bug where there is a parent while trying to add view”.
Expected Output: “to avoid having bug where there is a
parent while trying to add view”.

The second approach is the few-shot learning [51], in
which we exploited the pre-trained LLaMA in inference
mode by asking it to generate a prediction for each instance
in the test set via a specific prompt featuring n examples
of the task to perform. The parameter n indicates the
“few-shots” provided to the model. For example, in a 3-
shot setting, 3 random examples from our training set are
provided in the prompt asking the model to extract the
rationale from a commit message in the test set. The 3
examples are the same for all instances in the test set
(example of prompt in the replication package [16]).

Note that our training and test sets also feature instances
without a rationale to extract (overall, 137 instances).
These are instances which, in a real usage scenario, would
be returned by the previous two components of our pipeline
since we know that we can expect ∼19% of commit
messages identified as likely to feature an explicit rationale
to actually not containing it. For these cases, LLaMA is
instructed during both strategies to return an empty string.

B. Empirical Evaluation

We present the design (Section IV-B1) and results
(Section IV-B2) of the study conducted to assess the
performance of our approach for the extraction of the
commit rationale.

1) Study Design: The formulated research question is:
RQ2: To what extent is LLaMA able to extract the

sentences documenting the rationale from commit
messages?

We assess the performance of the two strategies, i.e., fine-
tuning and few-shot, on our test set featuring 187 commit
messages for which sentences describing the rationale (if
any) have been manually extracted. For the efficient fine-
tuning strategy, we run the fine-tuning on our training set
for up to 10 epochs, reporting the performance achieved
on the test set after 1, 3, 5, and 10 epochs. Concerning
the few-shot learning, we show the performance of LLaMA
in the 0-shot, 1-shot, 3-shot, 5-shot, 10-shot, 15-shot, and
20-shot learning scenarios, performed using one A100 GPU
with 40GB of RAM provided by Google Colab.

We use BLEU (Bilingual Evaluation Understudy) score
[52] as evaluation metric, commonly used to assess the
similarity between generated and reference text, measuring
the presence of candidate n-grams in the reference text.

TABLE III
RQ2: Results of LLaMA for rationale extraction.

Strategy BLEU score
Sentence Corpus Hyplen

Epochs

Efficient
Fine-tuning

1 0.064 0.189 3,087
3 0.175 0.268 6,359
5 0.189 0.269 6,763
10 0.202 0.269 7,421

Shot

Few-shot

0 0.015 0.028 4,812
1 0.161 0.219 3,988
3 0.214 0.360 3,471
5 0.263 0.408 3,330
10 0.29 0.404 3,758
15 0.325 0.386 4,533
20 0.323 0.389 4,727

This computation results in a score ranging from 0 (com-
pletely dissimilar sequences) to 1 (identical sequences). We
adopt the BLEU-4 variant implemented in the SacreBLEU
library [53], considering the overlap in terms of 4-grams
between the generated and the reference text.

We evaluate the sentence-level BLEU score, the corpus-
level BLEU score, and the hypothesis length. The first is
computed as the mean of the BLEU score obtained by
individually contrasting each model output to the relative
target in the test set. The corpus-level score, instead, is
obtained by calculating the BLEU between the output
corpus, i.e., the concatenation of LLaMA output for all
the instances of the test set, and the target corpus, i.e.,
the concatenation of all targets in the test set. Finally, the
length of the hypothesis (Hyplen) is the total length of the
LLaMA output. The latter measures the quantity of text
generated by the approach and can be used to compare it
with the expected target length. We also analyze the best-
performing configuration (that, as we will discuss later, is
the 15-shot learning) by running it on 400 previously unseen
commit messages (i.e., messages not featured in the 15
examples used for the few-shot learning) randomly collected
from the set of 96,034 ⟨Cdiff , Cm⟩ pairs likely to feature
an explicit rationale. The first author manually inspected
these 400 instances, looking at the original commit message
and the rationale extracted from it by LLaMA. The goal of
the inspection was to first flag instances lacking an explicit
rationale in the commit message, which are false positives
originating from the earlier stages of our process. In a real
scenario, these instances represent failure cases for our
pipeline to build a dataset of commits with their rationale.
Thus, we consider them as such. For all remaining commits,
the first author classified the extracted rationale as correct
(i.e., LLaMA correctly identifies the rationale in the commit
message) or wrong. For each instance, he/she indicated
whether LLaMA extracts all sentences documenting the
rationale or only a subset of them. All instances classified
as meaningful by the first author got a double check by the
second author. After discussing 6 cases of disagreement,
they agreed on the final classification.

2) Results Discussion: Table III shows the results ob-
tained by LLaMA with the two strategies. Besides the
BLEU score variants (sentence and corpus), the Hyplen

reports the amount of tokens generated by the model for
the entire test set, which should be compared to the target
(expected) length of 3,342 tokens.

With efficient fine-tuning, the BLEU scores show a
gradual increase as the number of training epochs increases.
However, the improvement becomes marginal when tran-
sitioning from 5 to 10 epochs. Nevertheless, the Hyplen

metric reveals that LLaMA generates an extensive amount
of text which is not part of the target; indeed, it generates
more than twice the needed text after 5 and 10 epochs
(e.g., 7,421 tokens against the expected 3,342 at 10 epochs).
The situation is different with few-shot learning (bottom
of Table III). Without any example in the prompt, i.e.,
zero-shot, the BLEU score values are very low. However,
introducing just a single example as input (i.e., 1-shot)
significantly improves performance (e.g., from 2.8% to
21.9% in corpus BLEU). As the number of shots increases,
the performance further improves, reaching a plateau at
15-shots. This setting is the one we adopt since it achieved
the highest sentence BLEU and almost identical corpus
BLEU when compared to the 20-shots. Notably, the Hyplen

values are also closer to the expected target.
Regarding the qualitative analysis of the 400 instances,

LLaMA does not generate an output for 5 of them (1%),
despite these instances having a rationale in the commit
message. Among the remaining 395, 47 had no rationale in
the input commit message (12%), with LLaMA still trying
to extract information from them. Finally, 296 commits are
labeled as meaningful (75%). Out of these, 186 featured all
rationales documented in the commit message, with 123
of them featuring only one rationale.

Answer to RQ2: LLaMA can extract meaning-
ful sentences documenting the rationale for code
changes for 75% of commit messages. In 48% of
cases, the extracted rationale is comprehensive,
while in the remaining 27% is only partial.

V. Generating the rationale for commit diffs
Building on top of the previously described steps, we

detail our generative approach to document the rationale
for commit diffs (Section V-A) and its empirical evaluation
(Section V-B).
A. Approach Description

Our starting point to create the dataset needed for
training a generative model for rationale documentation
are the 96,034 ⟨Cdiff , Cm⟩ pairs obtained through the
“Rationale filtering pipeline” (see Fig. 1).

While these are commits featuring an explicit rationale,
we have to run on them the Rationale Extractor (i.e.,
LLaMA in its best configuration, namely the 15-shot
prompting) to create the pairs ⟨Cdiff , {Cr}⟩.

Being LLaMA a large language model featuring 7B
parameters, we rented 2 RTX A6000 GPUs featuring 48GB
of RAM each, enabling the extraction of the rationale from
57,452 commits (60%), since the GPUs at our disposal were
not sufficient to run it in inference mode (i.e., to generate
the predictions).

Since the goal is to use this data to train a generative
model, two filters were applied to remove noisy instances
before starting the learning process. First, we discarded
instances for which LLaMA extracted a rationale whose
length, in terms of tokens, was less than 5 or more than 50,
resulting in a set of 49,270 instances (86%). The goal of
this filtering is to remove meaningless rationales (i.e., those
featuring few words), and to exclude long rationales that
could hinder the learning process of the generative model.
Second, we removed extracted rationales starting with
one of the following constructs: “git-svn-id:[url]”, “Merged
[branch] in [other-branch]”, “Push [branch]”, and “Signed-
off-by:[author]”. Indeed, we observed these as recurring pat-
terns in the wrong rationales extracted by LLaMA (3,325
instances). At the end, we obtained 45,945 ⟨Cdiff , {Cr}⟩
pairs, which have been split into training (36,756, 80%),
evaluation (4,595, 10%), and test set (4,594, 10%).

We used the training set to fine-tune the CodeT5+ model
[15], which has been pre-trained on over 8M functions
written in eight different programming languages, with
various objectives, such as contrastive learning, text-code
matching, and causal language modeling. For our study,
we employed the CodeT5+base variant, featuring 220M
trainable parameters. For fine-tuning, we used the AdamW
optimizer [54] with a learning rate of 5e-5, a batch size of
16 and fixing the input length to 512 tokens and the output
length to 128 tokens (longer sequences are truncated).
To prevent overfitting we used early stopping by saving
model checkpoints every 2k training steps and assessing
performance at each checkpoint, stopping training if no
improvement is noted compared to 5 checkpoints (i.e., 10k
training steps) earlier. The evaluation of the checkpoints is
conducted using the BLEU-4 [53], with the best-performing
checkpoint identified after 30k training steps (∼13 epochs).
After training the model, we used the beam search strategy
[55] to generate predictions, enabling the synthesis of K
candidate solutions (rationales) for a single commit diff,
and we conducted experiments using various values of K
ranging from 1 to 10.

B. Empirical Evaluation
We present the results of our empirical assessment of

CodeT5+ for commits’ rationale generation.
1) Study Design: The formulated research question is:
RQ3: To what extent is CodeT5+ able to automat-

ically generate the rationale for code changes?
RQ3 represents the final evaluation of our complete

pipeline. Indeed, the training set for CodeT5+ has been
built by relying on the components we defined to mine a
large dataset of ⟨Cdiff , {Cr}⟩ pairs.

To address RQ3, we run CodeT5+ against our test set
of 4,594 instances (Section V-A). We compute (i) the
BLEU-4 score of the predictions when contrasted towards
the reference rationale, and (ii) the percentage of correct
predictions, namely cases in which the predicted rationale
is identical to the reference one.

We investigate whether the performance of CodeT5+ is
influenced by its confidence in the prediction. CodeT5+
provides a score for every prediction, which indicates
the log-likelihood of that prediction. To illustrate, a log-
likelihood of -0.1 corresponds to a likelihood of 0.90
(ln(x) = −0.1 =⇒ x = 0.90). The likelihood represents the
model’s level of confidence in the prediction, ranging from
0.00 to 1.00 (higher values indicate greater confidence).
We categorize predictions into one of ten buckets based on
their confidence. The ten buckets represent all predictions
having confidence between 0.0 and 0.1, 0.1 and 0.2, . . . , 0.9
and 1.0. We show how the correct and wrong predictions,
as well as the BLEU scores, are distributed across the
10 buckets. This can provide insights into the actual
usability of our approach: even assuming the overall
performance on the test set to not be satisfactory, if the
high-confidence predictions are valuable, developers may
agree to receive recommendations (i.e., an automatically
generated rationale) when the model is highly confident,
reducing the burden of low-quality recommendations.

While the above-described evaluation is fully automated
and can provide us with preliminary indications about the
quality of the generated rationale, it has two important
limitations. First, the test dataset has been built using our
automated pipeline, which we know includes a percentage
of wrong target rationales. Second, the wrong predictions
(i.e., cases in which the generated output is not identical
to the reference one) might still be valuable for developers,
as possibly being validly generated rationales just using a
different wording as compared to the reference ones.

We conducted the following evaluation steps. First, two
authors manually checked the correct predictions (i.e.,
generated rationale matching the target) to verify the
accuracy of the target rationale extracted by LLaMA. This
check gives us confidence about the reported percentage of
correctly generated rationales.

Second, we selected a statistically significant sample
(95% confidence ±5%) of 363 incorrect high-confidence
predictions to assess reliability. The first author labeled
them as clear (the generated rationale can be understood)
or unclear, with 324 clear instances further labeled by the
first two authors as partially equivalent to the reference
rationale (i.e., conveying the same information but with
additional details in the target). Conflicts in 47 instances
(14%) were resolved through discussion, with a Cohen’s
kappa score of 0.69 [56], indicating substantial agreement.

Third, we computed the token-level Levenshtein distance
[57] between incorrect predictions and target rationales,
reporting the number of cases where the distance was at
most one or two tokens.

TABLE IV
RQ3: Results of CodeT5+ for rationale generation

Beam Size Performance Metric
Correct Predictions BLEU score

1 1.91% (88/4,594) 0.06
3 1.93% (88/4,594) 0.063
5 2.04% (94/4,594) 0.064
10 2.09% (96/4,594) 0.065

These are wrong predictions which, however, with very
low effort might be adjusted to obtain a meaningful
rationale. Finally, we conduct an experiment aimed at
evaluating the quality of the generated rationales. We
selected 100 of the 324 commit messages that we classified
as having a “clear” rationale and asked 20 participants
having experience in Java to assess (i) the clarity of the
generated rationales as we previously did (with the goal of
factoring out a possible bias we as authors could have in
our manual validation), and (ii) the semantic equivalence of
the generated rationale with respect to the target rationale.
The 100 messages were split into 10 surveys, each featuring
10 of them. Each participant was assigned to one survey,
ensuring that each commit message was inspected by
two independent evaluators. Participants had an average
experience of 3.61 on a scale from 1 (“Very low experience”)
to 5 (“Very high experience”). For each commit message,
participants expressed their level of agreement on a scale
from 1 (“Totally Disagree”) to 5 (“Totally Agree”) to the
following two statements: “The provided rationale is clear”
(focus on the generated rationale) and “The two rationales
are semantically equivalent” (both generated and target
rationales are shown).

2) Results Discussion: From the Table IV reporting the
results using different beam sizes, it is clear that CodeT5+
struggles to generate the rationale, since the percentage of
correct predictions is ∼2%, independently from beam size.

These results are not surprising for two reasons. First, the
challenging task we are addressing, that can be compared
to generative tasks such as bug-fixing [58] or automated
code review [59] in which similar success rates have been
reported. Second, the strict definition of “correct prediction”
that we are adopting: a generated rationale differing from
the expected target of one term is considered wrong.

Through the analysis of the token-level Levenshtein
distance [57] , we found that 40 (wrong) predictions were
“1 token far” from the target rationale, usually a space or a
period added at the end of the rationale in the prediction.
These can basically be considered as correct instances,
pushing a bit the correctness to ∼3%.)ther 14 predictions
are 2-tokens apart from the target.

The manual analysis of wrong predictions provides
insights about their potential usefulness. Out of the 363
inspected predictions, 39 (11%) have been classified as
“unclear” (i.e., it is not possible to judge its quality). For
the remaining 324 instances, the two authors agreed on
classifying them as partially equivalent to the rationale
written by developers in 111 (34%) of cases.

One example is discussed in the following, while the set
of validated rationales is publicly available [16].
Target: Since the facilities can have any type of activity,
this has to be true also for the knowledge of a person.
Prediction: It is allowed to add any kind of activity type
to a facility for more flexibility against given input data.

The rationale for code changes resides in the choice of
allowing to add any activity to facilities, and that must,
thus, apply to a person’s knowledge. CodeT5+ partially
captures the rationale behind the code change (allowing
to add any activity to a facility) and adds the explanation
that the change aims to enhance flexibility with respect to
input data. This is classified as “partially equivalent”.

The 363 wrong predictions we manually inspected were
sampled from the high-confidence predictions, so these
are basically the best-case scenario for our model. Still,
∼30% of meaningful predictions represent an encouraging
result. The usefulness of the high-confidence prediction is
supported by the analysis in which we relate the prediction
quality and their confidence. 92% of wrong predictions fall
in the first confidence bucket (i.e., confidence lower than
0.1). These are instances for which the model struggles,
likely because nothing “similar”, in terms of code diff,
has been seen in the training set. With the increase of
confidence, the percentage of wrong predictions decreases,
until reaching 0.6% in the highest confidence bucket (i.e.,
confidence higher than 0.9). The latter features 41% of the
88 correct predictions generated by the model. In general,
when looking at predictions having a confidence higher
than 0.7, they feature 101 wrong (2% of the overall wrong)
and 77 correct (88% of the overall correct) predictions.

The distribution of the BLEU score for predictions
having different confidence is reported in Fig. 2: the higher
quality of high-confidence predictions is confirmed, with
the median BLEU score in the highest confidence bucket
being 1.0 (i.e., a correct prediction). In general, an upward
trend is visible with the increase in the model’s confidence.

The aggregated results of the surveys, shown in the Fig. 3,
highlight the relationship between the confidence scores
of generated commit messages and their perceived quality
based on participant evaluations.

Fig. 2. BLEU scores in the different confidence buckets.

Confidence Score

M
ea

n
Ev

al
ua

tio
n

2

3

4

5

0.75 0.80 0.85 0.90 0.95

Clarity of the Generated Rationale
Semantic equivalence with Extracted Rationale

Fig. 3. Evaluations about clarity and meaning of the rationale.

For the clarity of the generated rationale, the mean was
3.56, indicating a moderately positive reception among
participants regarding the messages’ ability to clearly
explain the motivation behind code changes. For semantic
equivalence, the mean average evaluation was slightly lower,
at 3.10, suggesting that while participants found some
alignment between the generated and extracted rationales,
there is substantial room for improvement in ensuring
semantic consistency. The decline in ratings with decreasing
confidence scores confirms that the model’s confidence can
be a useful indicator of the quality of generated messages.

In the end, most of the predictions fall in the first (lowest)
confidence bucket. This indicates that the model exhibits a
low confidence, possibly due to the limited size of the
training set. When the confidence is high, the quality
of the predictions increases. This is supported by the
distribution of the correct predictions/BLEU score, as well
as by our manual inspection of wrong predictions having
high confidence, furthermore supported by evaluations
given by Java experts involved for the surveys.

Answer to RQ3: CodeT5+ generate a correct
rationale for ∼3% of commits. On predictions with
high confidence, manual analysis show that ∼34%
of the generated rationales are partially correct.

VI. Threats to validity
Construct validity threats concern the relationship

between theory and observation and are mostly related
to the measurements we performed. We used standard
evaluation metrics both when dealing with classifiers (i.e.,
recall and precision employed to assess the Rationale filter-
ing pipeline) as well as when evaluating generative models
such as LLaMA for rationale extraction and CodeT5+ for
rationale generation (BLEU-4 and percentage of correct
predictions). These metrics are aligned to what similar
works in the literature used (e.g., [2], [5], [29], [32], [60]).

Internal validity threats concern factors within our
study that can influence the findings. Subjectivity in
manual analyses may be present, though all inspections
were performed independently by two authors, except for

labeling the 1,157 commit messages (Section III-A), which
was done by the first author. These messages had already
been classified by Tian et al. [2] as containing a rationale,
and we further refined the classification. Additionally, the
configurations of the machine learning models and prepro-
cessing choices may have influenced the results, requiring
further investigation (e.g., hyperparameter tuning).

For LLaMA, we tested various prompts (e.g., explaining
the task) but found no improvement over the simpler
⟨Input, ExpectedOutput⟩ prompt (Section IV-A). We also
experimented with RoBERTa [61] and CommitBART
[62], fine-tuning them for rationale extraction, but they
performed worse than LLaMA [16]. Lastly, the training set
for CodeT5+ (∼36k instances) may be insufficient, and we
plan to experiment with larger datasets in future work.

External validity threats relate to the generalization
of findings. We targeted commits from Java projects and
having specific characteristics (e.g., impacting a single diff
hunk). These choices affect the generalizability of findings,
which is not claimed out of this commits population.

VII. Conclusion

Existing techniques for automated commit message
generation mainly describe what has changed rather than
why. In this work, we tackle the challenging problem of
explaining the rationale for code changes, which requires
building a large-scale training set documenting commit
rationales. We proposed a pipeline to automatically create
such a dataset, showing its ability to both (i) select
commits documenting the rationale (∼81% of precision),
and (ii) create the needed ⟨Cdiff , {Cr}⟩ pairs, with {Cr}
representing sentences expressing the rationale for the code
change (Cdiff) — ∼75% of meaningful pairs. We ran such
a pipeline in a collection of Java projects, creating a dataset
to train a CodeT5+ [15] model for the task of rationale
generation. We observed CodeT5+ struggling in such a
task, despite encouraging results obtained when the model
has high confidence in the generated predictions. Such
(partially) negative results call for additional research on
this problem.

Future work will focus on improving our pipeline to
mine commits with their rationale, trying to further push
its precision, or explore alternative approaches to using
LLMs. This would allow to build higher quality training
sets. Indeed, our findings indicate that the current approach
of using generative models for generating the rationale
is limited by the quality and precision of the training
data. This outcome highlights the importance of not only
focusing on the model architecture but also ensuring that
the dataset is highly curated and informative. Also, we
want to experiment with the impact of larger training
datasets on the performance of the generative model.

References

[1] S. Weber, The success of open source. USA: Harvard University
Press, 2004.

[2] Y. Tian, Y. Zhang, K.-J. Stol, L. Jiang, and H. Liu, “What
makes a good commit message?” in Proceedings of the 44th
International Conference on Software Engineering (ICSE), 2022,
p. 2389–2401.

[3] T. Vu, T.-D. Do, and H. D. Vo, “Context-encoded code change
representation for automated commit message generation,” arXiv
preprint arXiv:2306.14418, 2023.

[4] J. Dong, Y. Lou, Q. Zhu, Z. Sun, Z. Li, W. Zhang, and D. Hao,
“Fira: Fine-grained graph-based code change representation for
automated commit message generation,” in Proceedings of the
44th International Conference on Software Engineering (ICSE),
2022, pp. 970–981.

[5] S. Liu, C. Gao, S. Chen, L. Y. Nie, and Y. Liu, “Atom: Commit
message generation based on abstract syntax tree and hybrid
ranking,” IEEE Transactions on Software Engineering, vol. 48,
pp. 1800–1817, 2019.

[6] E. Shi, Y. Wang, W. Tao, L. Du, H. Zhang, S. Han, D. Zhang, and
H. Sun, “Race: Retrieval-augmented commit message generation,”
in Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2022, pp. 5520–5530.

[7] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang,
“Neural-machine-translation-based commit message generation:
How far are we?” in Proceedings of the 33rd International
Conference on Automated Software Engineering (ASE), 2018, p.
373–384.

[8] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in
Proceedings of the 32nd International Conference on Automated
Software Engineering (ASE), 2017, pp. 135–146.

[9] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit
message generation for source code changes,” in Proceedings of
the 28th International Joint Conference on Artificial Intelligence
(IJCAI), 2019, pp. 3975–3981.

[10] S. Jiang and C. McMillan, “Towards automatic generation
of short summaries of commits,” in Proceedings of the 25th
International Conference on Program Comprehension (ICPC),
2017, pp. 320–323.

[11] K. Al Safwan, M. Elarnaoty, and F. Servant, “Developers’ need
for the rationale of code commits: An in-breadth and in-depth
study,” Journal of Systems and Software, vol. 189, p. 111320,
2022.

[12] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software
history under the lens: A study on why and how developers
examine it,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2015, pp. 1–10.

[13] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do
software engineers understand code changes? an exploratory
study in industry,” in Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software
Engineering, ser. FSE ’12. New York, NY, USA: Association
for Computing Machinery, 2012.

[14] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar,
A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama:
Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[15] Y. Wang, H. Le, A. D. Gotmare, N. D. Bui, J. Li, and S. C.
Hoi, “CodeT5+: Open code large language models for code un-
derstanding and generation,” arXiv preprint arXiv:2305.07922,
2023.

[16] F. Casillo, A. Mastropaolo, G. Bavota, V. Deufemia, and
C. Gravino, “Towards generating the rationale for code
changes,” 2024. [Online]. Available: https://doi.org/10.5281/
zenodo.8187207

[17] A. Kleebaum, B. Paech, J. O. Johanssen, and B. Brügge, “Contin-
uous rationale identification in issue tracking and version control
systems,” in Joint Proceedings of REFSQ 2021 Workshops, ser.
CEUR Workshop Proceedings, vol. 2857, 2021.

[18] M. Dhaouadi, B. J. Oakes, and M. Famelis, “End-to-end rationale
reconstruction,” Proceedings of the 37th International Conference
on Automated Software Engineering (ASE), 2022.

[19] P. N. Sharma, B. T. R. Savarimuthu, and N. Stanger, “Extracting
rationale for open source software development decisions — a
study of python email archives,” in Proceedings of the 43rd
International Conference on Software Engineering (ICSE), 2021,
pp. 1008–1019.

[20] B. Rogers, J. Gung, Y. Qiao, and J. E. Burge, “Exploring
techniques for rationale extraction from existing documents,”
in Proceedings of the 34th International Conference on Software
Engineering (ICSE), 2012, p. 1313–1316.

[21] R. P. Buse and W. R. Weimer, “Automatically documenting
program changes,” in Proceedings of the 25th International
Conference on Automated Software Engineering (ASE), 2010,
pp. 33–42.

[22] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshy-
vanyk, “On automatically generating commit messages via
summarization of source code changes,” in Proceedings of the
14th International Working Conference on Source Code Analysis
and Manipulation (SCAM), 2014, pp. 275–284.

[23] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshy-
vanyk, “Changescribe: A tool for automatically generating
commit messages,” in Proceedings of the 37th International
Conference on Software Engineering (ICSE), vol. 2, 2015, pp.
709–712.

[24] J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, “On automatic
summarization of what and why information in source code
changes,” in Proceedings of the 40th Annual Computer Software
and Applications Conference (COMPSAC), vol. 1, 2016, pp. 103–
112.

[25] Y. Huang, Q. Zheng, X. Chen, Y. Xiong, Z. Liu, and X. Luo,
“Mining version control system for automatically generating
commit comment,” in Proceedings of the 11th International
Symposium on Empirical Software Engineering and Measurement
(ESEM), 2017, pp. 414–423.

[26] R. Salakhutdinov, “Learning deep generative models,” Annual
Review of Statistics and Its Application, vol. 2, pp. 361–385,
2015.

[27] P. Loyola, E. Marrese-Taylor, J. Balazs, Y. Matsuo, and F. Satoh,
“Content aware source code change description generation,” in
Proceedings of the 11th International Conference on Natural
Language Generation (INLG), 2018, pp. 119–128.

[28] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural archi-
tecture for generating natural language descriptions from source
code changes,” arXiv preprint arXiv:1704.04856, 2017.

[29] Q. Liu, Z. Liu, H. Zhu, H. Fan, B. Du, and Y. Qian, “Generating
commit messages from diffs using pointer-generator network,”
in Proceedings of the 16th International Conference on Mining
Software Repositories (MSR), 2019, pp. 299–309.

[30] A. See, P. J. Liu, and C. D. Manning, “Get to the point:
Summarization with pointer-generator networks,” arXiv preprint
arXiv:1704.04368, 2017.

[31] H. Wang, X. Xia, D. Lo, Q. He, X. Wang, and J. Grundy,
“Context-aware retrieval-based deep commit message generation,”
ACM Trans. Softw. Eng. Methodol., vol. 30, no. 4, pp. 1–30,
2021.

[32] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denois-
ing sequence-to-sequence pre-training for natural language
generation, translation, and comprehension,” arXiv preprint
arXiv:1910.13461, 2019.

[33] L. Y. Nie, C. Gao, Z. Zhong, W. Lam, Y. Liu, and Z. Xu,
“Coregen: Contextualized code representation learning for commit
message generation,” Neurocomputing, vol. 459, pp. 97–107, 2021.

[34] C. Sammut and G. I. Webb, Eds., TF–IDF. Boston, MA:
Springer US, 2010, pp. 986–987.

[35] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag
of tricks for efficient text classification,” arXiv preprint
arXiv:1607.01759, 2016.

[36] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-HLT),
2019, pp. 4171–4186.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[38] A. Mastropaolo, L. Pascarella, and G. Bavota, “Using deep
learning to generate complete log statements,” arXiv preprint
arXiv:2201.04837, 2022.

[39] W. Tao, Y. Wang, E. Shi, L. Du, S. Han, H. Zhang, D. Zhang,
and W. Zhang, “A large-scale empirical study of commit message
generation: models, datasets and evaluation,” Empirical Software
Engineering, vol. 27, pp. 1–43, 2022.

[40] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in
github for MSR studies,” in Proceedings of the 18th International
Conference on Mining Software Repositories (MSR), 2021, pp.
560–564.

[41] D. Spadini, M. Aniche, and A. Bacchelli, “PyDriller: Python
framework for mining software repositories,” in Proceedings
of the 26th Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE), 2018, pp. 908–911.

[42] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou,
and T. Mikolov, “Fasttext.zip: Compressing text classification
models,” arXiv preprint arXiv:1612.03651, 2016.

[43] I. Montani, M. Honnibal, M. Honnibal, A. Boyd, S. V.
Landeghem, H. Peters, P. O. McCann, jim geovedi, J. O’Regan,
M. Samsonov, D. de Kok, G. Orosz, M. Blättermann,
D. Altinok, R. Mitsch, M. Kannan, S. L. Kristiansen,
Edward, L. Miranda, R. Bournhonesque, P. Baumgartner,
R. Hudson, E. Bot, Roman, L. Fiedler, R. Daniels, kadarakos,
W. Phatthiyaphaibun, and Schero1994, “explosion/spaCy:
v3.5.4: Bug fixes for overrides with registered functions
and sourced components with listeners,” Jun. 2023. [Online].
Available: https://doi.org/10.5281/zenodo.8091979

[44] N. Shuyo, “Language detection library for java,” 2010. [Online].
Available: http://code.google.com/p/language-detection/

[45] L. Erlenhov, F. Gomes de Oliveira Neto, R. Scandariato, and
P. Leitner, “Current and future bots in software development,”
in Proceedings of the 1st International Workshop on Bots in
Software Engineering (BotSE), 2019, pp. 7–11.

[46] S. Amreen, A. Mockus, C. Bogart, Y. Zhang, and R. L. Zaret-
zki, “Alfaa: Active learning fingerprint based anti-aliasing for
correcting developer identity errors in version control systems,”
Empirical Software Engineering, vol. 25, pp. 1136–1167, 2019.

[47] T. Dey, S. Mousavi, E. Ponce, T. Fry, B. Vasilescu, A. Filippova,
and A. Mockus, “Detecting and characterizing bots that commit
code,” in Proceedings of the 17th International Conference on
Mining Software Repositories (MSR), 2020, p. 209–219.

[48] T. Dey, B. Vasilescu, and A. Mockus, “An exploratory study
of bot commits,” in Proceedings of the 42nd International
Conference on Software Engineering Workshops (ICSEW), 2020,
p. 61–65.

[49] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, and S. Paul,
“Peft: State-of-the-art parameter-efficient fine-tuning methods,”
https://github.com/huggingface/peft, 2022.

[50] R. Zhang, J. Han, C. Liu, P. Gao, A. Zhou, X. Hu, S. Yan,
P. Lu, H. Li, and Y. Qiao, “Llama-adapter: Efficient fine-tuning
of language models with zero-init attention,” arXiv preprint
arXiv:2303.16199, 2023.

[51] Y. Wang, Q. Yao, J. Kwok, and L. M. Ni, “Generalizing from a
few examples: A survey on few-shot learning,” arXiv preprint
arXiv:1904.05046, 2020.

[52] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A
method for automatic evaluation of machine translation,” in
Proceedings of the 40th annual meeting of the Association for
Computational Linguistics (ACL), 2002, pp. 311–318.

[53] M. Post, “A call for clarity in reporting bleu scores,” arXiv
preprint arXiv:1804.08771, 2018.

[54] I. Loshchilov and F. Hutter, “Decoupled weight decay regular-
ization,” in Proceedings of the 7th International Conference on
Learning Representations (ICLR), 2019.

[55] M. Freitag and Y. Al-Onaizan, “Beam search strategies for neural
machine translation,” arXiv preprint arXiv:1702.01806, 2017.

[56] J. Cohen, “A coefficient of agreement for nominal scales,”
Educational and Psychological Measurement, vol. 20, no. 1, pp.
37–46, 1960.

[57] V. I. Levenshtein et al., “Binary codes capable of correcting
deletions, insertions, and reversals,” in Soviet physics doklady,
vol. 10, no. 8. Soviet Union, 1966, pp. 707–710.

[58] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White,
and D. Poshyvanyk, “An empirical study on learning bug-fixing
patches in the wild via neural machine translation,” ACM Trans.
Softw. Eng. Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019.

[59] R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshy-
vanyk, and G. Bavota, “Using pre-trained models to boost code
review automation,” arXiv preprint arXiv:2201.06850, 2022.

[60] A. Mastropaolo, S. Scalabrino, N. Cooper, D. N. Palacio,
D. Poshyvanyk, R. Oliveto, and G. Bavota, “Studying the usage
of text-to-text transfer transformer to support code-related tasks,”
in Proceedings of the 43rd International Conference on Software
Engineering (ICSE), 2021, pp. 336–347.

[61] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A ro-
bustly optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.

[62] S. Liu, Y. Li, and Y. Liu, “Commitbart: A large pre-trained
model for GitHub commits,” arXiv preprint arXiv:2208.08100,
2022.

