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Abstract
The emergence of Large Code Models (LCMs) has transformed
software engineering (SE) automation, driving significant advance-
ments in tasks such as code generation, source code documentation,
code review, and bug fixing. However, these advancements come
with trade-offs: achieving high performance often entails exponen-
tial computational costs, reduced interpretability, and an increasing
dependence on data-intensive models with hundreds of billions of
parameters. In this paper, we propose Neurosymbolic Software En-
gineering, in short NSE, as a promising paradigm combining neural
learning with symbolic (rule-based) reasoning, while strategically
introducing a controlled source of chaos to simulate the complex
dynamics of real-world software systems. This hybrid methodology
aims to enhance efficiency, reliability, and transparency in AI-driven
software engineering, while introducing controlled randomness to
adapt to evolving requirements, unpredictable system behaviors,
and non-deterministic execution environments. By redefining the
core principles of AI-driven software engineering automation, NSE
lays the groundwork for solutions that are more adaptable, trans-
parent, and closely aligned with the evolving demands of modern
software development practices.

CCS Concepts
• Software and its engineering→ Software developmentmeth-
ods.
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1 Introduction
During the past decades, software engineering automation has
undergone a transformative evolution, driven by the rise of deep
neural networks (DNN) and the development of large-scale deep
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learning (DL) models with hundreds of billions of parameters, such
as DeepSeek-CoderV2 [8]. The scalability of these models, achieved
through extensive pre-training on diverse datasets and increasingly
larger architectures, has been a cornerstone of their success. This
has enabled large language models (LLMs) to develop a deep under-
standing of software engineering principles, automating tasks such
as code generation, documentation, optimization, and bug fixing
[12, 23]. These advancements have revolutionized development
workflows, significantly boosting the efficiency and accuracy of
software creation and maintenance.

The impact of LLMs is further evidenced by the rapid adop-
tion of commercial AI-powered tools such as GitHub Copilot [3]
and ChatGPT [2]. For example, GitHub Copilot, Microsoft’s flag-
ship AI-driven solution for software engineering, surpassed one
million active users by June 20231, underscoring the increasing
dependence on AI–assisted tools within the developer community.
What was once a distant vision: the deep integration of AI into
software engineering has now become a tangible reality, signaling a
transformative shift in the field. AI-powered tools have transitioned
from experimental prototypes to essential components of modern
software engineering workflows.

This rapid progress has been fueled by two key factors: (i) the
unprecedented accessibility of data, particularly from public code
repositories like GitHub, and (ii) significant technological advance-
ments in hardware acceleration, such as GPUs and TPUs. These
developments have enabled the scaling of LLMs and large code
models (LCMs) to hundreds of billions of parameters, empower-
ing AI-driven coding assistants like GitHub Copilot [3] and AWS
CodeWhisperer [1] to deliver highly accurate, efficient, and context-
aware solutions. As a result, AI-enabled software engineering has
become not only feasible but also a cornerstone of modern devel-
opment practices, reshaping the field in profound ways.

However, as these models become increasingly complex, the in-
creasing demand for computational power results in higher energy
consumption, higher hardware costs, and a greater environmen-
tal impact [12]. The relentless drive toward larger architectures
and expanding resource requirements not only strains existing in-
frastructure but also raises a fundamental question: Is indefinite
scaling truly a sustainable and effective path for advancing software
engineering automation?

A possible answer lies in the work of Villalobos et al. [22], antic-
ipating the beginning of a new phase, where the volume of human-
generated data can no longer sustain the exponential growth of
LLMs. This imminent change, which we refer to with the term sin-
gularity of automationmarks a turning point where AI’s demand
for training data exceeds the production rate of human knowledge.

1https://aibusiness.com/companies/one-year-on-github-copilot-adoption-soars
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In the context of software engineering, this phenomenon was
first introduced and explored in the pioneering work of Velasco
et al. [21], highlighting the urgent need for alternative approaches
beyond the mere scaling of models. In particular, Velasco’s work
et al. challenged the conventional belief that scaling deep learning
models alone is the most effective way to push the boundaries
of AI-driven software engineering. In this context, the authors
introduced the first Neurosymbolic framework specifically tailored
for program comprehension tasks, leveraging the complementary
strengths of deep learning techniques (e.g., LLMs) and traditional
symbolic methods to enhance program comprehension activities.

Building on this foundation, we introduce Neurosymbolic Soft-
ware Engineering (NSE), a generalized extension of the Neurosym-
bolic Program Comprehension (NsPC) framework, expanding its
scope beyond program comprehension to encompass the full spec-
trum of SE-related tasks. NSE offers a compelling alternative to the
indiscriminate scaling of deep learningmodels, while preserving the
key benefits that deep learning-based techniques have introduced
to the field.

A key improvement of the novel paradigm is the integration
of chaos, a critical yet previously unexplored component in the
original framework by Velasco et al. [21]. This addition allows us to
address a fundamental challenge in software engineering: modeling
andmanaging uncertainty in complex, evolving systems. To achieve
this, we leverage the mathematical foundation of chaos theory [11],
a powerful framework that provides a structured approach to un-
derstanding unpredictability, shifting requirements, and dynamic
behaviors in software development. Unlike pure randomness, which
is entirely unpredictable, a chaotic system operates under determin-
istic rules but is highly sensitive to initial conditions. This means
that even small changes in input can lead to drastically different
outcomes over time, a phenomenon widely known as the “butterfly
effect”–where a minor variation in one part of a system can cascade
into significant and unexpected consequences elsewhere.

In this position paper, we advocate for the integration of chaos
theory into software engineering automation pipelines as an effec-
tive and efficient proxy to model “true randomness”. With that in
mind, we introduce a unified vision that merges symbolic reasoning
and probabilistic learning with chaos, naturally bridging between
these two domains. This hybrid approach seeks to improve trans-
parency, efficiency, trustworthiness, and sustainability in AI-driven
software engineering, ensuring that automation remains scalable,
interpretable, and practically applicable while capturing the dy-
namic aspects of real-world software systems. The remainder of
this paper explores the key components of the NSE paradigm we
envision, its advantages, and its broader implications for the future
of AI in software engineering.

2 Background and Related Work
In this section, we first provide an overview of recent advances
in LCMs and their impact on various software engineering tasks.
We then highlight first attempts of Neurosymbolic approaches in SE.

2.1 Large Code Models
Recent advancements in LCMs have substantially contributed to
the automation of SE tasks, allowing greater support and greater

accuracy in various SE-related processes [12, 23]. Although general-
purpose LLMs, such as GPT-4 [4] and Claude [6], exhibit broad
applicability across multiple domains, they often lack the domain-
specific granularity required for code-related tasks. To address this
limitation, researchers have developed specialized LCMs, explicitly
designed to enhance SE applications. Notable examples include
CodeLlama [19], StarCoder [16], Incoder [10] and DeepSeek-Coder
[15]. These domain-adapted models leverage code-centric training
data and employ task-aware optimizations, thereby improving the
precision and automation of SE activities, including various code-
related tasks. A complete analysis is provided in the Systematic
Literature Review by Watson et al. [24].

2.2 Neurosymbolic AI in SE
Princis et al. [18] introduce a hybrid approach that combines sym-
bolic reasoning with LCMs to improve SQL query generation. Their
system uses symbolic checks for query validation and repair, along
with partial query evaluation and early elimination of invalid queries,
resulting in improved runtime efficiency and accuracy.

Arakelyan et al. [7] enhance semantic code search (SCS) systems
by integrating neural and symbolic methods. Their approach uses
rule-based parsing to match natural language queries with code
snippets, though the manually created rules may lack generalizabil-
ity across languages.

In different research, Jana et al. [14] introduces CoTran, a neu-
rosymbolic system powered by large language models to translate
code between programming languages. CoTran incorporates sym-
bolic execution feedback to ensure the functional equivalence of
translated code, specifically supporting translations between Java
and Python. The inclusion of the symbolic component enhances
the system’s ability to preserve the original code’s logic, resulting
in more robust and reliable translations.

Parisotto et al. [17] propose a Neuro-Symbolic Program Synthesis
approach to improve program induction, addressing key challenges
such as high computational costs, limited interpretability, and task-
specific training requirements. Their method constructs executable
programs in a domain-specific language using input-output exam-
ples, demonstrating a strong generalization to unseen tasks.

In a separate line of research, Hu et al. [13] introduces NSEdit,
a Transformer-based code repair method that predicts editing se-
quences to fix buggy source code across varied program structures
and code repair benchmarks.

Further applications of neurosymbolic AI techniques can be
found in the realms of representation learning [5], error correction
[25] and semantic code repair [9].

3 Conceptualizing Neurosymbolic Software
Engineering

The rise of LCMs has closely driven the evolution of software en-
gineering automation, enabling breakthroughs in tasks like code
generation, bug fixing, and vulnerability detection–long viewed as
beyond the reach of automation (Section 1). However, this progress
has also revealed new challenges that now constrain further ad-
vances in the field.

This section introduces the core components of the proposedNSE
paradigm and explains how their interaction supports AI-driven
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software automation (Section 3.1). We then highlight opportunities
and open challenges for adopting NSE, outlining key directions for
future research and practice (Section 3.2).

3.1 Establishing a New Paradigm
We conceptualize Neurosymbolic Software Engineering as an in-
novative paradigm to advance software engineering automation,
harnessing the combined strengths of neural probabilistic learning
and symbolic reasoning, unified through the presence of controlled
chaos. The latter serves as the connective element between these
two domains, enabling a synergistic collaboration that integrates
the advantages of data-driven probabilistic learning, facilitating
pattern recognition and deep semantic understanding, with the
precision, interpretability, and correctness of symbolic reasoning,
which has long been the foundation of rule-based frameworks and
verification methods.

Figure 1 illustrates the three fundamental components of our
envisioned NSE paradigm. At its core, this paradigm integrates the
following elements:

• Probabilistic Method: This component capitalizes on the
latest advancement in LLMs and their ability to distill knowl-
edge from vast amounts of code and natural language data.
By identifying patterns and relationships within the data,
LLMs and LMCs in particular enable systems to generalize
and adapt to new unseen problems. These models excel at
tasks such as code completion, bug detection, and natural
language understanding, providing a data-driven foundation
for automation in software engineering.

• Symbolic Method: This component encompasses logical
reasoning frameworks, constraint solvers, and rule-based
inference systems. Symbolic methods ensure that software
engineering processes are interpretable, correct, and aligned
with formal specifications. By combining symbolic reasoning
with probabilistic learning, the NSE paradigm achieves a
balance between flexibility and precision.

• Chaos-driven Component: This component injects con-
trolled randomness into the system to simulate real-world
uncertainty. Its primary function is to bridge neural proba-
bilistic learning with symbolic reasoning, enabling the ex-
ploration of alternative solutions when deterministic logic
or statistical inference alone falls short. During training, this
component can be leveraged to introduce structured noise
to simulate out-of-distribution data, situations where the
input deviates from what the model has previously encoun-
tered. This ability to remain robust and effective despite such
variations is a significant advantage, especially in dynamic
software environments. Crucially, because the chaos-driven
component employs structured randomness i.e., variability
governed by deterministic rules, it provides a principled ap-
proach to modeling uncertainty, allowing NSE to handle
unpredictability with both flexibility and precision.

Together, these three components form a cohesive framework
that advances software engineering automation by combining the

strengths of probabilistic learning, symbolic reasoning, and chaos-
driven adaptability. This integration ensures that the resulting sys-
tems are not only powerful and efficient but also interpretable,
trustworthy, and capable of addressing the complexities of real-
world software engineering challenges.

In practice, one possible instantiation of NSE intentionally intro-
duces controlled perturbations or noise into inputs and execution
conditions during testing to observe how small changes propagate
through the software pipeline. These chaos-driven trials can reveal
hidden vulnerabilities and edge case behaviors that purely proba-
bilistic or deterministic methods might overlook. Unlike random
testing, which can lack focus, chaos in NSE is carefully managed
and targeted, guided by theoretical principles to explore critical vari-
ations without introducing irrelevant or meaningless noise. This
approach not only improves testing activities, but also provides
valuable benefits for program repair, code generation, and security
vulnerability detection in a broader context.

Probabilistic 
Method

Symbolic 
Method

Chaos

NSE

Figure 1: Neurosymbolic Software Engineering Paradigm.

3.2 Opportunities and Open Challenges
By bridging neural learning and symbolic reasoning while incor-
porating deliberately controlled chaos, NSE introduces a new class
of automation solutions with unique advantages. The following
sections provide an overview of the opportunities (�) that this
paradigm offers in addressing key software engineering challenges.

Furthermore, we explore the open challenges (.) that the SE
community may face when transitioning to this approach. These
challenges highlight critical areas that require further research, de-
velopment, and innovation to fully exploit the potential of NSE and
establish it as a transformative actor in the field, with the goal of
fully integrating neurosymbolic principles into real-world software
engineering workflows.

3.2.1 Opportunities for a better, faster, stronger AI-driven software

engineering automation �

Improved interpretability and scalability: Unlike black-box
deep learning models, NSE incorporates rule-based logic that al-
lows developers to trace and comprehend the reasoning behind
automated suggestions and predictions. Furthermore, the presence
of the symbolic reasoner facilitates performance optimization via
structured constraints, avoiding the necessity to scale up the size
of the training dataset and DL architecture, to improve the perfor-
mance of the system on the given task.
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Trustworthiness and robustness against bias: With the pos-
sibility to integrate formal verification thanks to the symbolic meth-
ods, NSE guarantees that the generated software engineering arti-
facts comply with well-defined correctness standards. Additionally,
while traditional deep learning models are susceptible to adversarial
perturbations, often resulting in misleading predictions, the integra-
tion of a symbolic reasoning component helps mitigate biases and
robustness issues by enforcing logical consistency and rule-based
validation mechanisms.

Energy-Efficient AI for Sustainable Automation: Scaling
deep learning models requires substantial computational resources,
raising concerns about their environmental sustainability [20]. NSE
presents a more energy-efficient alternative by combining symbolic
reasoning, structured constraints, and compact, specialized neu-
ral models. Specifically, NSE reduces the dependence on massive
datasets by using structured symbolic knowledge, minimizing the
need for continuous data expansion. In addition, as an extension
of its scalability benefits, NSE enhances model sustainability by
integrating predefined formal rules, logical constraints, and domain-
specific knowledge, ultimately reducing the reliance on large-scale
datasets for training while maintaining high performance and ac-
curacy.

Context-Aware andAdaptiveAutomation: A defining strength
of NSE, as envisioned, is its ability to incorporate adaptive and
context-sensitive intelligence into software engineering automa-
tion. Unlike purely deep learning-based approaches, which, while
efficient in executing specific tasks, often require extensive retrain-
ing to adapt to new contexts, NSE leverages symbolic reasoning
combined with controlled chaos to dynamically adjust to evolving
requirements, environments, and software development paradigms.
3.2.2 Challenges and limitations .

Handling randomness effectively: Controlling and manag-
ing randomness to achieve the desired level of variability without
compromising reliability is a challenge. The predictions of neural
models can lead to unwanted behaviors that can impact the consis-
tency and dependability of automated software engineering tasks.

Encoding knowledge in symbolic learning systems: Sym-
bolic AI depends on explicitly encoded rules and logic, which re-
quire domain expertise to define. Manually encoding symbolic con-
straints can be labor intensive and may not scale efficiently across
diverse SE tasks. Ensuring that symbolic representations remain
up-to-date as software engineering practices evolve is a nontrivial
challenge.

Generalization across SE-related practices: Despite NSE born
as a generalized paradigm based on NsPC by Velasco et al. [21], en-
suring that models generalize effectively across different tasks and
software development environments is critical and time-consuming.
In this regard, domain-specific optimizations may be required, mak-
ing it harder to develop a one-size-fits-all NSE solution.

Deployment challenges: The absence ofwell-established frame-
works, tools, and benchmarks for NSE poses significant challenges
for practitioners seeking to adopt and integrate it into existing
software engineering workflows. Unlike traditional DL-based sys-
tems or symbolic approaches, NSE requires a hybrid infrastructure
that also contemplates chaos, via deep learning non-determinism.

This practical challenge can hinder the practical deployment of
NSE-based solutions that would otherwise require interoperability
with existing SE-tools, frameworks, and workflows. Bridging this
gap is vital, as a lack of standardized support and tools would slow
adoption, increase integration complexity, and limit the scalability
of NSE-based systems.

Keeping Pace with Rapidly Evolving Software Engineering
Practices: Software engineering is a rapidly evolving discipline, and
automation approaches designed for current practices risk becom-
ing obsolete as new methodologies, frameworks, and technologies
emerge. Ensuring that NSE remains adaptable and resilient to these
continuous advancements is crucial for its long-term viability and
requires joint effort provided by academics and industrials.

Ensuring Explainability Without Reducing Performance:
Increasing explainability often introduces additional computational
complexity that can negatively impact performance. For example,
while neural models rely on fast probabilistic approximations, sym-
bolic reasoning methods on the other hand, may requires explicit
rule processing, constraint solving, or logic-based inference, which
can slow down execution.

4 Conclusion and Future Directions
Traditional probabilistic methods or chaos theory alone, while capa-
ble of modeling uncertainty, struggle to keep pace with the scale and
adaptability of LLMs–that have fundamentally reshaped the way
automation is approached in software engineering. For example,
LLMs’ capability to generate context-aware suggestions in real-time
requires handling the nondeterministic nature of the model, which
exceeds the limitations of earlier approaches based solely on statis-
tical inference or chaotic modeling. The NSE framework addresses
these challenges by integrating symbolic reasoning with neural
learning and chaos-driven adaptability. The symbolic component
ensures that the results of LLMs are interpretable and verifiable,
enforcing correctness and providing structured inference. Mean-
while, the chaos-driven component simulates real-world uncer-
tainty, helping LLMs adapt to changing environments and unseen
data. This hybrid approach preserves the flexibility and scalability
of LLMs while also ensuring their reliability and transparency in
the face of dynamic, unpredictable software engineering tasks that
increasingly rely on seamless collaboration between humans and
intelligent systems to achieve the desired goals.

Looking ahead, we envision NSE as a key component of the
future of software engineering automation, thanks to its ability
to integrate controlled uncertainty. By adopting this hybrid ap-
proach, NSE facilitates more dependable, sustainable, and flexible
automation solutions to address the complexities underlying mod-
ern software engineering practices that are blending with LLMs
in increasingly dynamic, data-rich, and non-deterministic develop-
ment environments. This integration enables systems not only to
perform traditional tasks such as code generation and bug fixing,
but also to adapt intelligently to changing requirements, ambiguous
input, and evolving software ecosystems.
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